
Recursion & Ocean Colors

In this activity, you will learn about an advanced programming technique called
recursion. At the same time, your Sphero will visualize why the ocean appears
blue by showing the connection between ocean depth on color wavelength.

LEARNING OBJECTIVES:
• I can practice industry standards, including:
- Printing data to the console

• I can define and use CS fundamentals, including:
- Recursion and base case
- Writing pseudocode

• I can use JavaScript to create a program.

• I can execute the created program using Sphero.

Tags: functions text coding JavaScript recursion base case

wavelengths console

Grades: 7 to 12+ | Duration: 1-2 Hours

CCSS: CCSS.Math.Content.6.EE.C.9

NGSS: HS-PS4-1

Sphero Recursion & Ocean Colors - 1

This project was developed by
Sphero® and is featured on
MakerHub with their permission.

For more makerspace projects,
visit makerhub.demco.com.

Step #1: Exploration - Blue Oceans

Do you know why the ocean appears blue?

It is because visible colors of light penetrate differently into the ocean depths. The longer the wavelength,

the more quickly it is absorbed. Blue is a short wavelength, so it penetrates to a deeper depth. Watch the

video below for more information.

In this activity, you will use your Sphero to visualize which colors are absorbed most quickly and which colors

you can see at a greater depth.

YouTube video: https://youtu.be/XA3rNgyEmwA

Sphero Recursion & Ocean Colors - 2

https://youtu.be/XA3rNgyEmwA

Step #2: Skills Building - Deep Dive

Make your Sphero dive to the bottom of the ocean! The following depths (in meters) are just past the

threshold for where colors are absorbed into the ocean: 2, 5 ,7, 12. You will use the Sphero to mimic this

dive.

Copy and paste the code for the full program below into your Sphero Edu app. Try running the code!

How far did the Sphero travel?
What color appeared?

const rainbow = {
 5: { r: 255, g: 0, b: 0 },
 4: { r: 255, g: 140, b: 0 },
 3: { r: 255, g: 255, b: 0 },
 3: { r: 0, g: 255, b: 0 },
 1: { r: 0, g: 0, b: 255 },
}

function getNumberOfColors(depth) {
 if (depth <= 4) {

return 5;
 } else if (depth > 4 && depth <= 7) {

return 4;
 } else if (depth > 7 && depth <= 12) {

return 3;
 } else if (depth > 12 && depth <= 22) {

return 2;
 } else {

return 1;
 }
}

function getOceanColors(colors, count) {
 if (count === 0) {

return colors;
 } else {

colors.push(rainbow[count]);
return getOceanColors(colors, count - 1);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Copy

Sphero Recursion & Ocean Colors - 3

Step #3: Skills Building - Changing Variables

Now, change the duration variable in your program to the following numbers. Record what colors show for

each number.

2

5

7

12

22

Based on your observations above, make a hypothesis for which colors are absorbed into the ocean at each

distance. Can you now explain why the ocean looks blue?

 }
}

async function startProgram() {
 const duration = 2; // CHANGE ME
 const speed = 60;

 await roll(0, speed, duration);

 const numberOfColors = getNumberOfColors(duration);
 const oceanColors = getOceanColors([], numberOfColors);

 let i = 0;
 while (i < oceanColors.length) {

await strobe(oceanColors[i], 1, 1);
await delay(0.5);
i++;

 };

 await speak("Ocean depth is " + duration + "meters");
 exitProgram();
}

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Sphero Recursion & Ocean Colors - 4

Step #4: Challenge - Recursion

Recursion is an advanced computer science concept: it involves calling a function within a function.

Recursive programs have two components:

A base case—a scenario, that when reached, ends the function from being called.

A set of rules that makes sure the base case is eventually reached.

Take a look at the function below and answer the following questions:

What is the base case?
If the count is 3 when you first call the function, how many times will getOceanColors be called in
total?
Why is an empty array passed into the function the first time you call it?
What do you think colors and count equal every time the function is called?

const rainbow = {
 5: { r: 255, g: 0, b: 0 },
 4: { r: 255, g: 140, b: 0 },
 3: { r: 255, g: 255, b: 0 },
 2: { r: 0, g: 255, b: 0 },
 1: { r: 0, g: 0, b: 255 },
}

function getOceanColors(colors, count) {
 console.log(`count is ${count} and colors are ${JSON.stringify(colors)}`
 if (count === 0) {

return colors;
 } else {

colors.push(rainbow[count]);
return getOceanColors(colors, count - 1);

 }
}

let numberOfColors = 4;
getOceanColors([], numberOfColors);

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Copy

Sphero Recursion & Ocean Colors - 5

Let’s test your answer in the last question! You might have seen console.log(colors) in the code. You can use

this line to print data. It is often used in simple debugging. We are going to use it to see more clearly how

this recursive function works.

First, open up an Internet browser on a laptop or PC. Did you know that you have a JavaScript engine

in your browser? You can access it using your developer tools. If you aren’t sure where to find your

developer tools, ask a teacher or do a search on the Internet.

Try pasting the code above into your developer console. When you press enter, console.log() will

print the colors and count each time the function runs. Does it matched what you guessed?
Try changing numberOfColors to a different number. What do you expect it to print this time? Test

your answer in the JavaScript console again. Were you correct?
HINT: Your console remembers the variables you’ve declared, so you only need to paste the

following lines in each new time you want to call it!

numberOfColors = 3;
getOceanColors([], numberOfColors);

1
2

Copy

Sphero Recursion & Ocean Colors - 6

